A lower bound for the Laplacian eigenvalues of a graph—proof of a conjecture by Guo
نویسنده
چکیده
We show that if μj is the j-th largest Laplacian eigenvalue, and dj is the j-th largest degree (1 ≤ j ≤ n) of a connected graph Γ on n vertices, then μj ≥ dj − j + 2 (1 ≤ j ≤ n− 1). This settles a conjecture due to Guo.
منابع مشابه
A note on the bounds of Laplacian-energy-like-invariant
The Laplacian-energy-like of a simple connected graph G is defined as LEL:=LEL(G)=∑_(i=1)^n√(μ_i ), Where μ_1 (G)≥μ_2 (G)≥⋯≥μ_n (G)=0 are the Laplacian eigenvalues of the graph G. Some upper and lower bounds for LEL are presented in this note. Moreover, throughout this work, some results related to lower bound of spectral radius of graph are obtained using the term of ΔG as the num...
متن کاملON NEW CLASSES OF MULTICONE GRAPHS DETERMINED BY THEIR SPECTRUMS
A multicone graph is defined to be join of a clique and a regular graph. A graph $ G $ is cospectral with graph $ H $ if their adjacency matrices have the same eigenvalues. A graph $ G $ is said to be determined by its spectrum or DS for short, if for any graph $ H $ with $ Spec(G)=Spec(H)$, we conclude that $ G $ is isomorphic to $ H $. In this paper, we present new classes of multicone graphs...
متن کاملSome results on the energy of the minimum dominating distance signless Laplacian matrix assigned to graphs
Let G be a simple connected graph. The transmission of any vertex v of a graph G is defined as the sum of distances of a vertex v from all other vertices in a graph G. Then the distance signless Laplacian matrix of G is defined as D^{Q}(G)=D(G)+Tr(G), where D(G) denotes the distance matrix of graphs and Tr(G) is the diagonal matrix of vertex transmissions of G. For a given minimum dominating se...
متن کاملSome remarks on the sum of the inverse values of the normalized signless Laplacian eigenvalues of graphs
Let G=(V,E), $V={v_1,v_2,ldots,v_n}$, be a simple connected graph with $%n$ vertices, $m$ edges and a sequence of vertex degrees $d_1geqd_2geqcdotsgeq d_n>0$, $d_i=d(v_i)$. Let ${A}=(a_{ij})_{ntimes n}$ and ${%D}=mathrm{diag }(d_1,d_2,ldots , d_n)$ be the adjacency and the diagonaldegree matrix of $G$, respectively. Denote by ${mathcal{L}^+}(G)={D}^{-1/2}(D+A) {D}^{-1/2}$ the normalized signles...
متن کاملOn Eccentricity Version of Laplacian Energy of a Graph
The energy of a graph G is equal to the sum of absolute values of the eigenvalues of the adjacency matrix of G, whereas the Laplacian energy of a graph G is equal to the sum of the absolute value of the difference between the eigenvalues of the Laplacian matrix of G and the average degree of the vertices of G. Motivated by the work from Sharafdini an...
متن کامل